Ozone air quality and radiative forcing consequences of changes in ozone precursor emissions
نویسندگان
چکیده
[1] Changes in emissions of ozone (O3) precursors affect both air quality and climate. We first examine the sensitivity of surface O3 concentrations (O3 ) and net radiative forcing of climate (RFnet) to reductions in emissions of four precursors – nitrogen oxides (NOx), non-methane volatile organic compounds, carbon monoxide, and methane (CH4). We show that long-term CH4-induced changes in O3, known to be important for climate, are also relevant for air quality; for example, NOx reductions increase CH4, causing a long-term O3 increase that partially counteracts the direct O3 decrease. Second, we assess the radiative forcing resulting from actions to improve O3 air quality by calculating the ratio of DRFnet to changes in metrics of O3 . Decreases in CH4 emissions cause the greatest RFnet decrease per unit reduction in O3 , while NOx reductions increase RFnet. Of the available means to improve O3 air quality, therefore, CH4 abatement best reduces climate forcing. Citation: West, J. J., A. M. Fiore, V. Naik, L. W.
منابع مشابه
Attribution of direct ozone radiative forcing to spatially resolved emissions
[1] Quantifying the dependence of ozone direct radiative forcing (DRF) on the mixture and spatial distribution of precursor emissions is a key step towards understanding the impact of air quality standards on climate. We use here a combination of satellite observations of ozone and its radiative effect in conjunction with an adjoint chemical transport model to determine the ozone DRF due to glo...
متن کاملOn the sensitivity of radiative forcing from biomass burning aerosols and ozone to emission location
[1] Biomass burning is a major source of air pollutants, some of which are also climate forcing agents. We investigate the sensitivity of direct radiative forcing due to tropospheric ozone and aerosols (carbonaceous and sulfate) to a marginal reduction in their (or their precursor) emissions from major biomass burning regions. We find that the largest negative global forcing is for 10% emission...
متن کاملChemical and climatic drivers of radiative forcing due to changes in stratospheric and tropospheric ozone over the 21st century
The ozone radiative forcings (RFs) resulting from projected changes in climate, ozone-depleting substances (ODSs), non-methane ozone precursor emissions and methane between the years 2000 and 2100 are calculated using simulations from the UM-UKCA chemistry– climate model (UK Met Office’s Unified Model containing the United Kingdom Chemistry and Aerosols sub-model). Projected measures to improve...
متن کاملMulti-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the period 1990–2015
Over the past few decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and air pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990–2015, as simulated by seven global atmospheric compo...
متن کاملNet radiative forcing due to changes in regional emissions of tropospheric ozone precursors
[1] The global distribution of tropospheric ozone (O3) depends on the emission of precursors, chemistry, and transport. For small perturbations to emissions, the global radiative forcing resulting from changes in O3 can be expressed as a sum of forcings from emission changes in different regions. Tropospheric O3 is considered in present climate policies only through the inclusion of indirect ef...
متن کامل